July 7.

The President, Dr. Ruschenberger, in the ehair.

Fifteen members present.
The death of Dr. Governeur Emerson was announced.
Prof. Persifor Frazer, Jr., made the following remarks:-
I had the honor, at the last meeting, of presenting to the Academy for its eonsideration, some attempts to reeoncile the results of the analyses of minerals by the best eliemists with formulas, which were construeted on the doctrine of quantivalence, $i . e$. , the known atom-saturating power of the elements. In my former eommunication I endeavored to show that such a misture of definite ehemical eompounds (generally erystallizing in different systems) as was indicated by the greater number of the old formulas could not have those charaeteristie physieal properties whieh serve to distinguish homogeneous bodies from eaeh other; and above all, that 110 mixture of two minerals erystallizing in different systems could produce a third crystallizing in still another system. I stated that there seemed to be only two cases in which the formation of minerals in this way is possible; the one where one of the compounds preponderates to such an extent that the resulting mass is moulded according to its own morphological law ; and the other where the resulting mass is not erystallized at all. but at most erystalline, $i . e$. , made up of minute erystals or individuals of each species, but simply aggregaterl together.

That such is the explanation of many erystalline and cryptoerystalline rocks the microscope has sufficiently demonstrated, and it would hardly be going too far to say, that, wherever an amorphous mineral shows sueh a ehemieal constitution that its elements cannot be brouglit into a single formula eonsistent with what we already know of the behavior of its anion and cathion radieals, a strong probability exists that the mineral is simply a mixture.

On this hypothesis of the case the eireumstance cannot fail to demand explanation that the same mixtures in the same proportions should so often occur with similar paragenesis; and it is not to be denied that this faet needs careful sturly.

But in many instanees the eause of this uniformity, itself apparently the result of ehanee, is to be traced to disintegration of a previously existing mineral into two or more others, or the partial alteration of one mineral into another throughout its whole mass, and by the aetion of outside forces.

Thus chaleopyrite might sutfer partial decomposition into ehaleocite and pyrite, or into tenorite and hematite, or into all four of
these minerals, and while the mass could have no crystal form of its own, the mutual ratios of the resulting compounds would be more constant as the process of decomposition was more perfect.

It often results that in calculating a formula for a so-called species the results of analyses of specimens from widely distant localities, and made by different persons, agree remarkably well together, while the atomic ratio is such as to resist all efforts to bring these atoms into one homogeneous compound Often, too, the student sces clearly that he is dealing with a partially decomposed mass, and would, perhaps, be justified in writing " a, per cent. of the mineral A with b, per cent. of the mineral B disseminated through it," but it is obvious that he mnst assign wide limits to a and b; and if the species possess that patent of genuineness, crystal form, unless he definc those limits his formula loses its value.

Take the case of smaltite. This mineral has very well-marked physical properties and unmistakable crystal form, and is an arsenate of cobalt, iron, and nickel, but its per cent. of As varies from 59 per cent. (Salvetal \& Wertheim) to about 75 per cent. (Karsten); the Co from 0 per cent. (Rammelsberg) to 20 per cent. (Stromeyer) ; the Ni from 0 per cent. (Varrentrapp \& Stromeyer) to 29.50 (Rammelsberg) ; the Fe from trace (Rammelsberg) to 18 (von Kobell); Cu from 0 per cent. (Lange, Booth, Karsten, \&c.) to 2 per cent. (Jäckel). Besides these very large varietics of composition there are frequently found other elements with it, such as Bi and S . How is a formula to be constructed for such a mineral?

The only recourse is to the R 's, and we have no less than four groups of formulas proposed by Dana, under onc of which every smaltite yet analyzed can be brouglit. The first two of these are really identical, and differ only in the different proportions in which the analogous clements Ni, Co, and Fe , replace each other, and may be written $R A s_{2}$. But the next group (C) has the formula RAs $+\mathrm{RAs}_{2}$, and the third (D) $\mathrm{RAs}_{2}+\mathrm{RAs}_{3}$.

Independently of the presumptive evidence against such a mixture producing a beautiful octabedron of smaltite, where is to be the limit to such formulas? Why not $R A s+R A s_{2}+\mathrm{RAs}_{3}+$ etc.? And would it not be well to adopt some more definite rule for assigning formulas to minerals of such variable composition?

Without naming these laws certain facts can be assumcd on which to base them: 1st. If there is no single chemical formula which expresses the constitution of a crystallized mineral, then that mineral is a mixture. 2d. Its form is determined by the preponderance in quantity or in crystallizing power, or both, of one of its constituents. 3d. The mineral can only present its characteristics when the foreign ingredients are present under a given per cent.

The plan would seem to be to deduce from the known cliarac-
teristics of the simpler compounds which most rescmble it, to which of them it owed its morphological properties; and, having decided this question, to write the formula for that mineral as the species, and consider the other as a complex variety of it.

I append some few names of minerals with their old and new rational formulas gencrally compared, and in addition to the nsual method of writing these new formulas I have added that form of graphic symbol which presents fewest typographical difficulties.

Old Formula.	New Formula.
	Niccolite.
NiAs	$\mathrm{Ni}^{\mathrm{II}}=A \mathrm{~s}^{\mathrm{I}}-\mathrm{A} \mathrm{s}^{\mathrm{T}}=\mathrm{Ni}^{\mathrm{II}}$ or $\}$ (?)
$\mathrm{Ni}_{3} \mathrm{As}_{3}$	$\mathrm{Ni}^{1 V} \equiv \mathrm{As}^{\mathrm{V}}$ - $\mathrm{As}^{\mathrm{V}} \equiv \mathrm{Ni}^{\text {IV }}$ or ${ }^{\text {r }}$
	$\begin{gathered} A s^{I I I}=\mathrm{Ni}^{I V}-\mathrm{Ni}^{I V}=A s^{\mathrm{III}} \\ \left(\mathrm{Ni}_{2}\right)^{\mathrm{II}} \mathrm{As}_{2}{ }^{\mathrm{III}} \end{gathered}$
	Breithauptite.
NiSb	$\left(\mathrm{Ni}_{2}\right)^{\mathrm{rI}} \mathrm{Sb}_{2}{ }^{\text {III }}$
$\mathrm{Ni}_{3} \mathrm{Sb}_{3}$	
	Bornitc.
$\left(\mathrm{Cu}_{2}, \mathrm{Fe}\right) \mathrm{S}$	$\left(\mathrm{Cu}_{2}\right)_{3}{ }^{\text {II }} \equiv \mathrm{S}_{6}{ }^{\text {II }}=\left(\mathrm{Fc}_{2}\right)^{\mathrm{IV}}$
	$\left(\mathrm{Cu}_{2}\right)_{3}{ }^{\text {II }} \mathrm{Fe}_{2}{ }^{\text {ri }} \mathrm{S}_{6}$

(Recalculated from one of the original records of analysis.)

Chalcopyrite.

$$
\begin{gathered}
\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeS}+\mathrm{FcS}_{2}(\mathrm{D}) \\
\text { usually } \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Fc}_{2} \mathrm{~S}_{3}
\end{gathered}
$$

$$
\begin{gathered}
\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}}=\mathrm{S}_{2}{ }^{\mathrm{II}}=\mathrm{Fe}_{2}^{\mathrm{II}} \equiv \mathrm{~S}_{2}^{\mathrm{II}} \\
\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}} \mathrm{Fe}_{2}{ }^{\mathrm{TI}} \mathrm{~S}_{4}
\end{gathered}
$$

Barnhardite.
$2 \mathrm{CuS}+\mathrm{FeS}+\mathrm{FeS}_{2}$

$$
\left(\mathrm{Cu}_{2}\right)_{2}^{\mathrm{II}}=\mathrm{S}_{4}{ }^{\mathrm{II}}=\mathrm{Fe}_{2}{ }^{\mathrm{VI}}=\mathrm{S}
$$

$$
\left(\mathrm{Cu}_{2}\right)_{2} \mathrm{Fe}_{2} \mathrm{~S}_{5}
$$

Calaverite.

Miargyrite.
$\mathrm{Ag}_{2} \mathrm{~S}+\mathrm{Sb}_{2} \mathrm{~S}_{3}$

$$
\begin{gathered}
A g^{\mathrm{I}}-S^{\mathrm{II}}-\mathrm{Sb}^{\mathrm{III}}=\mathrm{S}^{\mathrm{II}} \\
A g^{\mathrm{I}} \mathrm{Sb}^{\mathrm{III}} \mathrm{~S}_{2}^{\mathrm{II}}
\end{gathered}
$$

$$
\begin{aligned}
& A u_{2} \mathrm{Tc}_{4} \\
& T e^{I I}=A u^{I I I}-\mathrm{Te}^{\mathrm{II}}-\mathrm{Te}^{\mathrm{II}}- \\
& -A u^{I I I}=T e^{I I} \\
& A u^{\mathrm{III}} \mathrm{Te}_{2}{ }^{\mathrm{II}}-\mathrm{Te}_{2}{ }^{\mathrm{II}} \mathrm{~A} \mathrm{u}^{\mathrm{III}} \\
& \left(\mathrm{Au}^{\mathrm{III}} \mathrm{Te}_{2}{ }^{\mathrm{II}}\right)_{2}
\end{aligned}
$$

Old Formula. New Formula.
(Antimonial.) Tetrahedrite.
$4 \mathrm{CuS}+\mathrm{Sb}_{2} \mathrm{~S}_{3}$

$$
\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}}=\mathrm{S}_{2}{ }^{\mathrm{II}}=\underset{\mathrm{S}^{\mathrm{II}}}{\mathrm{Sb}^{\mathrm{V}}-\mathrm{S}^{\mathrm{II}}-\mathrm{Sb}^{\mathrm{V}}=\mathrm{S}^{\mathrm{SI}}}=\mathrm{S}_{2}^{\mathrm{II}}=\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}}
$$

(Arsenical.) Tetrahedrite.
$4 \mathrm{CuS}+\mathrm{As}_{2} \mathrm{~S}_{3}$

Wittichenite.

$$
\begin{aligned}
3 \mathrm{Cu}_{3} \mathrm{~S}+\mathrm{Bi}_{3} \mathrm{~S}_{3} \quad \mathrm{~S}^{\mathrm{II}=}= & \mathrm{Bi}^{\mathrm{III}}-\mathrm{S}^{\mathrm{II}}-\left(\mathrm{Cu}_{2}\right)_{2}{ }^{\mathrm{II}}= \\
= & \mathrm{S}_{3}^{\mathrm{II}} \mathrm{Bi}^{\mathrm{III}} \\
& \left(\mathrm{Cu}_{2}\right)_{2}{ }^{\mathrm{II}} \mathrm{Bi}_{2}{ }^{\mathrm{III}} \mathrm{~S}_{5}^{\mathrm{II}}
\end{aligned}
$$

Note-Dana gives the atomic ratio of $\mathrm{Cu}: \mathrm{Bi}: \mathrm{S}:: 3: 1: 3$. From his seventl record of analysis (by Schneider), however, this ratio is $4: 2: 5$.

Stromeyerite.

$$
\left(\mathrm{Ag}_{\mathrm{g}}, \mathrm{Cu}_{2}\right) \mathrm{S}
$$

$$
\begin{gathered}
\left(\mathrm{Cu}_{2}\right)^{I I}=\mathrm{S}_{2}{ }^{\mathrm{II}}=\mathrm{Ag}_{\cdot 2}{ }^{\mathrm{I}} \\
\left(\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}} \mathrm{~A} \mathrm{~g}_{2}{ }^{\mathrm{I}}\right) \mathrm{S}^{\mathrm{II}}
\end{gathered}
$$

$$
\left(\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}} \mathrm{Ag}_{2}{ }^{\mathrm{I}}\right) \mathrm{S}_{2}^{\mathrm{II}}
$$

Note.-The atomic ratio expressed in Dana's formula is $\mathrm{Ag}: \mathrm{Cu}: \mathrm{S}:$: $1: 2: 1$, whereas from Stromeyer's analysis it appears very clearly as $1: 1: 1$.

Dufrenite.
Karsten's Analysis D2.

$$
\begin{aligned}
\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{PO}_{5}+3 \mathrm{HO} \quad \mathrm{O}^{\mathrm{II}}= & \mathrm{Fe}_{2}^{\mathrm{VI}}=\mathrm{O}_{3}{ }^{\mathrm{II}}=\mathrm{P}^{\mathrm{V}}=\mathrm{O}^{\mathrm{II}} \\
& \mathrm{O}^{\mathrm{II}} \\
\mathrm{O}^{\mathrm{II}}= & \mathrm{Fe}_{2}^{\mathrm{VI}}=\mathrm{O}_{3}{ }^{\mathrm{II}}=\mathrm{P}^{\mathrm{V}}=\mathrm{O}^{\mathrm{II}} \\
& \left(\left(\left(\mathrm{Fe}_{2}\right)_{2}{ }^{\mathrm{II}} \mathrm{O}_{3}\right)\left(\mathrm{P}^{\mathrm{II}} \mathrm{O}_{4}{ }^{\mathrm{II}}\right)_{2}^{\mathrm{III}}\right)_{2}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}
\end{aligned}
$$

Libethenite.
$4 \mathrm{CuO} . \mathrm{PO}_{5}+\mathrm{HO}$ From the atomie ratio.

$$
\begin{gathered}
\mathrm{Cu}: \mathrm{P}: \mathrm{H}: \mathrm{O}:: 2: 1: 1: 5 \\
\mathrm{Cu}_{2}^{\mathrm{II}}={ }^{\mathrm{I}} \mathrm{O}_{4}=\mathrm{P}^{\mathrm{V}}-\mathrm{O}^{\mathrm{II}}-\mathrm{H}^{\mathrm{I}} \\
\left(\mathrm{HCO}_{2}^{\mathrm{II}}\right)\left(\mathrm{P}^{\mathrm{r}} \mathrm{O}_{5}^{\mathrm{II}}\right)^{\mathrm{r}}
\end{gathered}
$$

Olivenite.

$$
4 \mathrm{CuO} \cdot(\mathrm{P}, \mathrm{As}) \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\left(\left(\mathrm{H}^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}\right) \mathrm{As}^{\mathrm{V}} \mathrm{O}_{5}{ }^{\mathrm{II}}\right)_{2}
$$

Note.-Some P replaces As.

$$
\mathrm{Cu}_{2}^{\mathrm{II}}=\mathrm{O}_{4} \equiv \mathrm{As}^{\mathrm{V}}-\mathrm{O}^{\mathrm{II}}-\mathrm{H}^{\mathrm{I}}
$$

Old Formula.
$2 \mathrm{CuO} . \mathrm{CO}_{2}$
$\left(\mathrm{Cu}_{2}\right)_{3} \mathrm{As}_{2}$
$\mathrm{Ag}_{2} \mathrm{Sb}$

New Formula.
Malachite.

$$
\mathrm{Cu}_{2}{ }^{\mathrm{II}} \equiv \mathrm{O}_{4}{ }^{\mathrm{II}} \equiv \mathrm{C}^{\mathrm{IV}}+\mathrm{aq}
$$

Domeykite.

$$
\begin{gathered}
\mathrm{As}^{\mathrm{III}} \equiv\left(\mathrm{Cu}_{2}\right)_{3}^{\mathrm{II}} \equiv \mathrm{As}^{\mathrm{III}} \\
\left(\mathrm{Cu} \mathrm{u}_{2}\right)_{3}{ }^{\mathrm{II}} \mathrm{As}_{2}{ }^{\mathrm{IIII}}
\end{gathered}
$$

Dyscrasite.

Calculated from original record of analysis by Rammelsberg (No. 9 in Dana).

Leucopyrite.
FeAs ${ }_{2}$

$$
\underset{A s^{\mathrm{I}}-\mathrm{Fe}^{\mathrm{II}}-\mathrm{A} \mathrm{~s}^{\mathrm{I}}}{\mathrm{Fe}^{\mathrm{II}} A \mathrm{~s}_{2}{ }^{\mathrm{I}}}
$$

Linnæite.
$2 \mathrm{CoS}+\mathrm{CoS}_{2}$

$$
\begin{gathered}
\mathrm{Co}^{\mathrm{II}}=\mathrm{S}_{2}^{\mathrm{II}}=\underset{\mathrm{Co}_{3} \mathrm{~S}_{4}^{\mathrm{IV}}}{ }=\mathrm{S}_{2}{ }^{\mathrm{II}}=\mathrm{Co}^{\mathrm{II}} \\
\hline
\end{gathered}
$$

Skutterudite.
CoAs_{3}

$$
\begin{aligned}
\mathrm{As}_{3}{ }^{\mathrm{I}} \equiv & \mathrm{Co}^{\mathrm{IV}}-\mathrm{Co}^{\mathrm{IV}} \equiv \mathrm{As}_{3}{ }^{\mathrm{I}} \\
& \left(\mathrm{Co}_{2}\right)^{\mathrm{VI}} \mathrm{As}_{6}{ }^{\mathrm{I}}
\end{aligned}
$$

Sylvanite.

$$
\begin{gathered}
\mathrm{Ag}^{\mathrm{II}} \mathrm{Te}^{\mathrm{II}}-\mathrm{A} u^{\mathrm{III}}=\mathrm{T} \mathrm{e}^{\mathrm{II}} \\
\left(\mathrm{Ag}^{\mathrm{I}} \mathrm{~A} u^{\mathrm{III}}\right) \mathrm{Te}_{2}^{\mathrm{II}}
\end{gathered}
$$

Jamesonite.
$\xlongequal{2}(\mathrm{~Pb}, \mathrm{Fe}) \mathrm{S}+\mathrm{Sb}_{2} \mathrm{~S}_{3}$

$$
\begin{gathered}
\mathrm{Pb}^{\mathrm{II}}=\mathrm{S}_{2}^{\mathrm{II}}=\mathrm{Sb}^{\mathrm{II}}-\mathrm{S}^{\mathrm{II}}-\mathrm{Pb}^{\mathrm{II}}- \\
-\mathrm{S}^{\mathrm{II}}-\mathrm{Sb}^{\mathrm{III}}=\mathrm{S}^{\mathrm{II}} \\
\text { with Fe replacing } \mathrm{Pb} \text {, or } \\
\mathrm{Pb}_{2}{ }^{\mathrm{II}} \mathrm{Sb}_{2}{ }^{\mathrm{III}} \mathrm{~S}_{5}^{\mathrm{II}}
\end{gathered}
$$

Chalcostibite.

$$
\mathrm{Cu}_{2_{2}} \mathrm{~S}+\mathrm{Sb}_{2} \mathrm{~S}_{3}
$$

$$
\begin{gathered}
\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}}=\mathrm{S}_{3}{ }^{\mathrm{II}}=\mathrm{Sb}_{2}{ }^{\mathrm{III}} \equiv \mathrm{~S}_{3}{ }^{\mathrm{II}} \\
\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}}\left(\mathrm{Sb}^{\mathrm{III}} \mathrm{~S}_{2}{ }^{\mathrm{II}}\right)_{3}{ }^{\mathrm{I}}
\end{gathered}
$$

Bournonite.

$$
\begin{aligned}
& 3\left(\mathrm{Cu}_{2}, \mathrm{~Pb}\right) \mathrm{S}+\mathrm{Sb}_{2} \mathrm{~S}_{5} \quad \mathrm{Sb}^{\mathrm{III}}=\mathrm{S}_{3}^{\mathrm{II}}=\mathrm{Pb}_{2}{ }^{\mathrm{II}}-\mathrm{S}^{\mathrm{II}}-\mathrm{Sb}^{\mathrm{III}}= \\
&= \mathrm{S}_{2}^{\mathrm{II}}=\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}} \\
&\left(\mathrm{~Pb}_{2}^{\mathrm{II}}\left(\mathrm{Cu}_{2}\right)^{\mathrm{II}}\right)\left(\mathrm{Sb}^{\mathrm{II}} \mathrm{~S}_{3}{ }^{\mathrm{II}}\right)_{2}^{\mathrm{III}}
\end{aligned}
$$

Old Formula.
Stephanitc.

$$
5 \mathrm{AgS}+\mathrm{Sb}_{2} \mathrm{~S}_{3}
$$

New Formula.

$$
\mathrm{Ag}_{5}^{1} \equiv \mathrm{~S}_{5}{ }^{1 \mathrm{II}} \equiv \mathrm{Sb}^{\mathrm{V}}
$$

$$
\mathrm{Ag}_{5}{ }^{1} \mathrm{Sb}^{5} \overline{\mathrm{~S}}_{5}{ }^{I I}
$$

Note—Dana's first record of analysis by H. Rose gives atomic ratio of $\mathrm{Sb}: \mathrm{S}: \mathrm{Ag}:: 1: 4.2: \overline{0} .2$, but the indications are of a compound as above.

Sartorite.

$$
\mathrm{PbS}+\mathrm{Sb}_{2} \mathrm{~S}_{3}
$$

$$
\begin{gathered}
\mathrm{Pb}^{\mathrm{II}}=\mathrm{S}_{2}{ }^{\mathrm{II}}=\mathrm{Sb}_{2}{ }_{2}^{\mathrm{II}} \equiv \mathrm{~S}_{2}^{\mathrm{II}} \\
\mathrm{~Pb}^{\mathrm{II}}\left(\mathrm{Sb}^{\mathrm{III}} \mathrm{~S}_{2}{ }^{\mathrm{II}}\right)_{2}
\end{gathered}
$$

Brochantite.
From Forchhammer's Analysis (D 3).
$\left(3 \mathrm{CuO} . \mathrm{SO}_{3}\right)_{2}+\mathrm{CuO} . \mathrm{HO}$ The ratio of

$$
\begin{gathered}
\mathrm{Cu}: \mathrm{O}: \mathrm{S}: \mathrm{H}:: 3: 9: 1: 6 \\
\text { hence } \\
\mathrm{Cu}_{2}{ }^{\mathrm{II}=\mathrm{O}_{4}{ }^{\mathrm{II}} \equiv \mathrm{~S}^{\mathrm{II}}=\mathrm{O}_{2}{ }^{\mathrm{II}}=\mathrm{Cu}^{\mathrm{II}}+} \text { +aq} \\
\text { hence } \mathrm{Cu}_{3}{ }^{\mathrm{II} \mathrm{SII}_{6}{ }^{\mathrm{II}}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}}
\end{gathered}
$$

Change of Habit in Smilacina bifolia.-Mr. Thomas Meeman remarked that this plant, as was well known, was usually terrestrial, preferring generally the vicinity of large trees. It propagates itself by underground stolons, advancing but a few inches each season; the stolons of the preceding year dying as soon as a new one was made. He had recent!y seen a case where the stolons had advanced from the ground, and up the trunk of a large chestnut tree, to the height of about two feet; the original stolons for several years back having died away, and the plant taken in a purely epiphytal character. The roots and stolons mostly had penetrated the coarse, rough bark of the chestnut tree, the leaves only being chiefly visible. The fact is trifling, and in old times, perhaps, hardly worth recording; but in these days, when the change of character in connection with the evolution of form had such a general interest, even this was worth recording.

July 14.

The President, Dr. Ruschenberger, in the chair.
Seven members present.
The following papers were presented for publication :-
"On Fertilization of certain Flowers through Insect Agency, and other Matters Botanical." By Thos. G. Gentry.

